- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0003000000000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Yang, Hongxia (2)
-
Zhou, Chang (2)
-
Bertozzi, Andrea L. (1)
-
ERICKSON, GREGORY M (1)
-
He, Jingrui (1)
-
MAKOVICKY, PETER J (1)
-
Ma, Jianxin (1)
-
SON, MINYOUNG (1)
-
Wang, Haonan (1)
-
Wang, Xiaowei (1)
-
YIN, YA-LEI (1)
-
Yang, Carl (1)
-
Yuan, Baichuan (1)
-
ZHOU, CHANG-FU (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Wang, Haonan; Zhou, Chang; Yang, Carl; Yang, Hongxia; He, Jingrui (, The Web Conference 2021)null (Ed.)
-
Yuan, Baichuan; Wang, Xiaowei; Ma, Jianxin; Zhou, Chang; Bertozzi, Andrea L.; Yang, Hongxia (, Prof. Int. Conf. Learning Representations (ICLR))Multivariate spatial point process models can describe heterotopic data over space. However, highly multivariate intensities are computationally challenging due to the curse of dimensionality. To bridge this gap, we introduce a declustering based hidden variable model that leads to an efficient inference procedure via a variational autoencoder (VAE). We also prove that this model is a generalization of the VAE-based model for collaborative filtering. This leads to an interesting application of spatial point process models to recommender systems. Experimental results show the method’s utility on both synthetic data and real-world data sets.more » « less
An official website of the United States government

Full Text Available